Online Algorithm for FoCal

Tatsuya Chujo

- Univ. of Tsukuba
- Mini-workshop on next generation DAQ
- March 16, 2020, Campus Innovation Center Tokyo,
 - Tamachi Tokyo, Japan

ALICE Focal status

- ALICE public note (~FoCal Lol) has been submitted to CDS, ALICE-PUBLIC-2019-005, on Nov. 1st, 2019
 - <u>https://cds.cern.ch/record/2696471</u>
- Discussed the ALICE FoCal at LHCC meeting on Nov. 2019 and Feb. 2020.
- ALICE internal review of FoCal: Jan. 14th, 2020.
 - plan: then submission of the FoCal Lol to LHCC, and will discuss at the LHCC June 2020 meeting for the approval.

FoCal-H

A Forward Calorimeter (FoCal) in the ALICE experimen

6–2028 at the LHC. The FoCal is a highly granular Si+V

*See Appendix A for the list of collaboration member

ALICE

© 2019 CERN for the benefit of the ALICE Collaboration. production of this article or parts of it is allowed as specified in the CC-BY-4.0 license

FoCal-E: high-granularity Si-W sampling calorimeter for photons and π^0 **FoCal-H**: conventional Cu-Sc sampling calorimeter for photon isolation and jets

Observables:

- π^0 (and other neutral mesons)
- Isolated photons
- Jets (and di-jets)
- J/ψ (Y) in UPC
- W, Z maybe possible
- Event plane and centrality

Advantage in ALICE: forward region nearly not instrumented; 'unobstructed' view of interaction point

Physics goals

- Quantify nuclear modification of the gluon density at small-x
 - Isolated photons in pp and pPb collisions
- Explore non-linear QCD evolution
 - Azimuthal $\pi^{0-}\pi^{0}$ and isolated photon- π^{0} (or jet) correlations in pp and pPb collisions
- Investigate the origin of long range flow-like correlations
 - Azimuthal π^{0-h} correlations using FoCal and central ALICE (and muon arm?) in pp and pPb collisions
- Explore jet quenching at forward rapidity
 - Measure high p_T neutral pion production in PbPb

Key questions

How QGP is created in heavy ion collisions and how thermalized? Is there any difference between QGP in the early universe and QGP produced in heavy ion collisions?

FoCal-E design

- Main challenge: Separate γ/π^0 at high energy
 - Two photon separation from π^0 decay (10 GeV, η =4.5) ~2mm
 - Needs small Molière radius and high granularity readout
 - Si-W calorimeter with effective granularity $\approx 1 \text{ mm}^2$

Studied in simulations 20 layers: W(3.5 mm \approx 1X₀) + silicon sensors Two types: Pads (LG) and Pixels (HG)

- Pad layers provide shower profile
- Pixel layers provide position resolution to resolve shower overlaps

Main optimization:

- Number of pixel layers and location
- Number of pad layers
- Maximum separation between layers

y GeV, η=4.5) ~2mm ularity readout ≈ 1mm²

5.4 GeV electron, pileup event

mini-FoCal (FoCal-E, PAD only)

- Built in Tsukuba, and shipped to CERN for test beam and ALICE test in 2018
- APV25 hybrid + SRS for readout

Slides from "ALICE FoCal review" on Jan. 14, 2020, by Fatah Rarbi (LPSC Grenoble) "PAD Readout Design"

PAD READOUT DESIGN

Olivier Bourrion, Rachid Guernane, Damien Tourres, Christophe Hoarau

Fatah RARBI

Slides by F. Rarbi at FoCal review (2020)

FEW DEFINITIONS

FOCAL-E DESIGN CONCEPT

- Focal-E detector is designed with 22 modules: 2 x 11 modules
- A single FoCal-E module, containing 20 layers of W converter and Si sensors

8 cm

5 x 9 cm

- 18 of the layers consist of 5 pad sensors of 9 x 8 cm² • 2 layers use pixel sensors (MAPS layer of 9 x 6 ALPIDE pixel 20 layers
- sensor chips)
- The total sensitive area of the module will be approx. 45 x 8 cm²
- All connections for readout, bias voltage, power and cooling are routed outside
- 2 modules can be stacked side-by-side

Beam line direction

FULL ELECTRONIC ARCHITECTURE

- Pad Layer board is based in HGCROC: designed by OMEGA-IN2P3 for HGCAL in CMS
 - Will be used as is
- Aggregator Board gathers data and trigger information from pad layer board
- Based in FPGA
- Can generate Local-L1 trigger from Trigger info provided by HGCROC

3 PAD Layer Board with HGCROC to read sensors

Slides by F. Rarbi at FoCal review (2020)

PAD-LAYER: PROPOSED FEE ARCHITECTURE

• FEE architecture :

- PCB of 8 x 45 cm² with 5 embedded "HGCROC"
- Analog signals from each pad sensors (72 pixels) will be read out by the HGCROC frontend chip which includes a charge sensitive amplifier-shaper and digitized to ship the data on a standard digital connection

Power Supply

8 cm

- Probes:
- Temperature
- Analog Power consumption
- Digital Power consumption
- Local power converter for cleaning power supplies

PAD-LAYER DESIGN

8 mm

few mm of margin for cooling CALICE info.: Up to Spacer 5 mm **Tungsten plate not enough for heat dissipation** bar Passive cooling with copper sheet (see backup) 3.5 mm

HGCROC: SPECIFICATION

FoCal

- Dynamic range:
- 3fC/MIP → 1MIP up to 2500MIP
- 3fC up to 7.5pC
- HGCROC:
- Charge measurement through 10b, 40MSPs ADC (up to 100fC) + TOT (0.1-10pC)
- Both TOT and TOA measurements are handle by a dedicated TDC block
- TOT ("Time Over Threshold") for charge measurement (+ ADC for low level signal)
- TOA ("Time Of Arrival") for timing measurement

TDC ToA specifications	
Resolution	about 25 ps RMS
Range	10 bits over 25 ns
Conversion rate	> 40 MHz (bunch o
Power consumption	< 2 mW / channel
Area	Pitch 120 µm
Technology	TSMC 130 nm
Temperature	-30 °C

TDC ToT specifications	
Resolution	< 50 ps RMS
Range	12 bits over 2-200 ns
Min time between hits	25 ns
Power consumption	< 2 mW / channel
Fixed latency	12 clock periods
Technology	TSMC 130 nm
Area	Pitch 120 µm
Temperature	-30 °C

HGCROC: DESCRIPTION

- 72 channels + 4 channels for common mode subtraction + 2 special calibration channels
- 32b Digital Data continuously stored in 512 length DRAM @40MHz
- 72 ch. x 32b x 40MHz: huge data volume
- → Only Local-L1-triggered data are read out
- Idle packet is continuously sent out when no L1-trigger is activated
- The data processing for the trigger "information" path
 - 32b: 4b header + 7b x 4
 - Sum of 4 or 9 channels depending on the sensor

Time between 2 successive local-L1-Trigger: 1.075 μ s \approx 1 μ s

OCCUPANCY: ASSOCIATED DATA RATE

- I pad-layer is composed of 5 pads (Si-sensor and the "PCB" with embedded FEE)
- Estimation of the data rate for the several pad layers (x and y axis)
- Data format for each channel defined by HGCROC:
 - 32 bits (ADC (10b) + TOA (10b) + TOT (12b))
- New data format according to the occupancy factor
 take into account the channel number (7 bit), the pad sensor (TBD), ... for example

DATA RATE ESTIMATION FOR 1 SI PAD: PP COLLISIONS @1MHZ

Example for 1 Si-pad sensor:

- IMHz counting rate, 72 pixels, 32 bit of data, 7 bit for channel number, header, calib., and common mode from HGCROC, 12% of occupancy:
- We obtain a data rate of:

DATA RATE ESTIMATION: PP COLLISIONS @1MHZ

DATA RATE ESTIMATION: PP COLLISIONS @1MHZ

- (a)40MHz)
- (a) 40 MHz)

 \rightarrow

- **Possible to share GBT-FPGA to several pad layers Design for the maximum rate** \rightarrow
 - (a)3.2Gb/s with FEC (80b) \rightarrow
 - @4.8Gb/s w/o FEC (112b \rightarrow
 - **Reduce the number of needed GBT-FPGA Reduce the number of needed CRU**

FEEAGGREGATOR BOARD

- Example of 3 pad-layers connected to one aggregator board
- General power supply for the FEE-PCB pad layer
- ADC for monitoring purposes:
 - Probes measurement
 - Each pad layer needs 15 voltage measurements
- FPGA: input data @1.28Gb/s
 GBT-FPGA: shared with other pad-layers
 - I2C slow control
 - Generate Local-L1-Trigger to be send to read out 1 Bx data or more
 - Modification of data format

(a)1.28Gb/s

- Upgrade of the firmware
- Radiation tolerant design
 - FEE Aggregator board is about 45 cm away from the beam
 - Ultrascale technology expected to be more radhard
 - Should be OK (some private communication from ITS) but precise estimates still missing
- Heat dissipation of the aggregator board: cooling is mandatory

Fig. 52: Neutron flux (arbitrary units) in FoCal as a function of layer number and radial position. One layer corresponds to a thickness of approximately 1 X_0 in the z direction.

PAD LAYERS GATHERING

Occupancy	# modules	# pad-layers	Input Data rate per pad layer	#
				6
12 % - 6% - 1.5% - 0.5%	6	108	735.64Mb/s	4
4% - 1.5% - 0.5%	4	72	454.84Mb/s	7
1% - 0.5%	4	72	272.32Mb/s	11
0.5%	8	144	230.2Mb/s	13
Total	22	396		

- Ex. : 3 pad-layers have a total of 120 signals @1.28Gb/s (data + trigger)
- According to possible arrangements for FoCal modules:
 - Choice to make on the number of pad-layers to be connected to the aggregator board
 - 3 different aggregator boards needed → 180 FPGA
 - Aggregator board connected to 3 pad-layers
 - Aggregator board connected to 2 pad-layers
 - Aggregator board connected to 1 pad-layers

• Aggregator board connected to at most 3 pad-layers due to the limited number of FPGA I/O

WORK IN PROGRESS

- HGCROC received from OMEGA group
- KCU105: Xilinx Dev. Kit already used in lab.
 - Phase 1: understand both Firmware and software
 - Work in progress to get used to operate the HGCROC chip
- Phase 2: design a FEE board of pad-layers + an Aggregator board

FOCAL SCHEDULE @LPSC

FOCAL Planning @LPSC

		2
	Q1	
HGCROC Understanding		
FEE PAD Layer: Prototype 0		
Test with Pad sensor		
FEE PAD Layer: Prototype 1		
Aggregator Board		
Test with Pad sensor		

HGCROC Understanding:

Define both firmware and software to get used to operate the HGCROC chip

FEE PAD Layer: Prototype 0:

Define the design of a development kit including ONE HGCROC and all other components as power supply, probes and holes to connect Si-pad sensor through wire bonding This PCB can be connected to the KCU105

Test with pad sensor:

Analyzing FEE board: noise, crosstalk, ...

Different Si-pad sensor could be tested

FEE PAD Layer: Prototype 1:

Define the design of the full FEE pad layer including the FIVE HGCROC

Aggregator Board:

Define the design of the aggregator board to be linked to the FEE PAD Layer (prototype 1) and includes FPGA and optical link

020				2021			
	Q2	Q3	Q4	Q1	Q2	Q3	Q4

CONCLUSION (PAD READOUT)

FOCAL-E Detector

- 22 modules
- I modules composed of 20 layers: 18 pad layers + 2 MAPS (ALPIDE) layers Pad layer: 5 pad sensors of 72, 1x1 cm² pixel + associated FEE Each pad layers linked to an aggregator board with embedded FPGA for data gathering, I2C slow
- control and monitoring possibilities
- By sharing readout parts (FPGA): only 180 FPGA could be used • The readout concept is a self-triggered mode with the FPGA providing the trigger decision
- - 8 CRU (24 optical fiber/CRU)
- Electronics to design, to test and to validate
- 396 pad layers
- 180 FEE aggregator board according to arrangement option for FoCal modules
- 3 different aggregator boards

Possible online data processing for FoCal PAD

- **1.** Pedestal subtraction and zero suppression
- 2. Removal of Common Mode Noise (CMN)
- 3. Signal selection (threshold) & clustering (2x2 or 3x3)
- 4. Longitudinal summing
- 5. (Trigger for high energy cluster)

(a) Common mode noise

(b) Hit selection and clustering

Aggregator board or CRU?

(c) Longitudinal summing and E, hit position determinations

Figures from Y. Minato (Nara Women's Univ.), Master thesis (2020)

HGCROC: DATA FORMAT

- Trigger charge sum (TC_X) produced (@40MHz and transferred (@1.28Gb/s
- Data @1.28Gb/s
- Local trigger information used to request data transfer (L1 message)
- The full frame is transferred for each L1 message
- No individual channel selection is possible

Total of $32b + (18+2+18)x_{32}b + 4x_{32}b = 1376b$ → to be readout at 1.28Gb/s \leftarrow 1.079 µs (≈930kHz) Close to 1MHz for read out detector

- Time between 2 successive local-L1-Trigger

FOCAL meeting

	٦	
idle		
	idle	idle

Slides by F. Rarbi at FoCal review (2020)

PAD-LAYER: PROPOSED FEE ARCHITECTURE

• FEE architecture :

- PCB of 8 x 45 cm² with 5 embedded "HGCROC"
- Analog signals from each pad sensors (72) pixels) will be read out by the HGCROC frontend chip which includes a charge sensitive amplifier-shaper and digitized to ship the data on a standard digital connection

Power Supply

8 cm

- Probes:
- Temperature
- Analog Power consumption
- Digital Power consumption
- Local power converter for cleaning power supplies

FOCAL meeting

PAD-LAYER DESIGN: TEMPERATURE SIMULATION

- Heat dissipation through ANSYS simulation, RT=20°C:
- ONE full pad-layer including W plate, Si-pad and PCB FEE board with embedded HGCROC chips
- PCB enclosed between 2 successive W plates
- Imm thickness sheet of copper used for passive cooling
- Temperature variation for cooling from o °C up to 30°C
- Hot spot @ center of HGCROC

FOCAL meeting