

林 直一 2018/8/18

Introduction

- Quarkonium suppression
 - カラー遮蔽による収量抑制
 - 束縛エネルギーによって融解温度が異なる
 - クォーコニウムの収量を系統的に測定することで QGPの到達温度などの情報を得る
- HF regeneration
 - 無相関なチャームクォークペア同士の再結合

 - ナイーブには∝(N_{coll})²/N_{part}
 チャームのダイナミクスに敏感
 - 重クォークの流体化、熱平衡化
- Feed down
 - Prompt/Non-Prompt J/Ψ
 - 崩壊長によりNon-Prompt fraction導出可能
- Other effects
 - CNM効果
 - Medium induced energy loss: color octet state, formation time

J/Ψ reconstruction with ALICE

- 中心ラピディティ(|η|<0.9)
 - J/ Ψ -> ee
 - バーテックス検出器によるNon-Prompt 測定 が可能
 - 基本的にはMBトリガー測定(~13μb⁻¹)
- 前方ラピディティ(2.5 < η < 4.0)
 - J/ Ψ -> μ μ
 - ミューオントリガー使用(~225 μb⁻¹)
 - 現状Prompt/Non-Prompt解析はできない (Run3から可能)

J/Ψ measurements in AA collisions

低い運動量で増加

- RHICでは見えず
 - D中間子の結果を見ると熱 化してない訳ではなく N_{coll}(チャームの数に対し) がN_{part}(軽いクォークの 数) が小さい

- $R_{AA}(RHIC) > R_{AA}(LHC)$
- QGP効果以外の寄与は?

(b)

350

250

300

 V_2

- 高い運動量でもv₂
 Flow 以外の影響?
- 高次のvnはどう見えるか

MB J/ Ψ production

- CNM, energy loss計算と無矛盾
- •実験の測定精度が理論的不定性より小さくなってきた
 - Gluon nPDFできる可能性
 - 他の寄与の見積もりは妥当か?

Centrality dependence in p-Pb

- nPDF, energy lossだ けでは特に中心衝突 での振る舞いを再現 できていない
- 他の寄与の可能性
 - Nuclear absorption
 - Comover break up
 - Collectivity
 - Others

Other quarkonium measurements in p-Pb

•Ψ'

- nPDFの影響はJ/Ψと同程度
- Particle density:
 - backward > forward
 - Comoverの影響に違い
- Crossing time
 - エネルギー依存性
- Yも収量抑制を確認

Collective motion of J/Ψ in p-Pb collisions

- $v_2(J/\Psi) \sim v_2(D) < v_2(K_s^0)$
 - $v_2(cc) \sim v_2(ud)$?
- ・理論計算よりも高い運動量で顕著
 • Pb-Pbと似た傾向
- 起源はまだよく分からない
 - Flow? Other effects?

6

J/Ψ production in p-Pb collisions

- MBに見るとCNM効果と無矛盾
- Centrality, multiplicity に区切ると現 状の理論計算では説明できない
- ・色々な寄与を見積もるには他の測定の助けが必要
 - Other quarkonium
 - Direct photon, HF, drell-yan…
- Non-zero v2
 - $v_2(J/\Psi) \sim v_2(D) < v_2(K_s^0)$
 - •他のクォーコニウム測定、v_n測定

J/Ψ解析の現状

- ・中間/高運動量収量抑制の衝突エネルギー依存性、粒子種依存 性はsequential meltingと無矛盾
 - 定量的に何か言えないか
 - •系統的なクォーコニウム測定、特にY
- Low p_T J/Ψ収量増加とJ/Ψ v₂
 - How about bottomonia?
- 理論計算の不定性の大部分はチャームの生成断面積の不定性
 - ・ゼロp_TまでのHF中間子の生成断面積(Run3で可能)
- Run3
 - 10 times more J/ Ψ available
 - Resolutionが上がることでS/B は改善:Ψ'で6-7

Test of quantitative comparison to sequential melting

New Observable for Quarkonium

- J/ Ψ polarization
 - ppではほぼゼロ
 - 強い磁場中での生成
 - 有限な値を持つ可能性
 - •初期生成と終状態生成の選別

$B \rightarrow J/\Psi$

- Run2まではボトムハドロンの直接測定は難しい
- 今年の重イオンRunで10%の統計誤差で測定可能
- CMSは低い運動量は測定困難

Bottom quark measurements

- LHCではB meson(< 10 GeV/c)は重クォークの拡散係数導出の カギとなる
- 陽子衝突での生成断面積
 - $\sigma_{\rm bb}/\sigma_{\rm cc}$ ~0.03 @ \sqrt{s} =7 TeV
- Run3ではB中間子をRun2のD中間子と同程度できている
 - 13 μ b⁻¹ (2015 Pb-Pb)->10 nb⁻¹
 - Bottom由来のv₂測定可能

Bottom hadron measurements

 R_{AA}

- ボトムハドロンの直 接測定が
- B feed-down J/ Ψ , D によるv₂測定

	Current, $0.1 \mathrm{nb}^{-1}$		Upgrade, $10 \mathrm{nb}^{-1}$	
Observable	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical
	$({ m GeV}/c)$	uncertainty	$({ m GeV}/c)$	uncertainty
Heavy Flavour				
D meson R_{AA}	1	10%	0	0.3%
$D_s meson R_{AA}$	4	15%	< 2	3%
D meson from B R_{AA}	3	30%	2	1%
${ m J}/\psi$ from B $R_{ m AA}$	1.5	15% (p _T -int.)	1	5%
B^+ yield	not accessible		3	10%
$\Lambda_{f c}\;R_{ m AA}$	not accessible		2	15%
$\Lambda_{ m c}/{ m D}^0$ ratio	not accessible		2	15%
$\Lambda_{ m b}$ yield	not accessible		7	20%
D meson $v_2 (v_2 = 0.2)$	1	10%	0	0.2%
$D_{s} meson v_2 (v_2 = 0.2)$	not a	accessible	< 2	8%
D from B $v_2 (v_2 = 0.05)$	not a	accessible	2	8%
J/ψ from B $v_2~(v_2 = 0.05)$	not a	accessible	1	60%
$\Lambda_{ m c} v_2 \; (v_2=0.15)$	not a	accessible	3	20%

ALICE, CERN-LHCC-2013-024

Charge dependent D meson v₁

- 重クォークの生成時間は軽いクォークに比べて短い (∝1/m_q)
 - 生成段階である程度の強磁場が残っている
 - ファラデー効果
 - ホール効果
 - v_1 として数%のシグナル (charged particle:~0.001%)
- 他にも衝突初期の影響を保持している量はあるか?

Directed flow measurement of D meson in Run3

先行研究 (STAR)

- STARが測定している
 - 傾向は見えている
 - 統計的にはALICE Run3の方が有利
- 将来的には(Run3では無理だが)ボトムも見てみたい
 - 生成時間はチャームより早い

Summary

- J/Ψproductionの現状
 - Low pT enhancement and high pt suppression
 - Sizable v_2 at intermediate and even high pT
 - 起源の解明
 - CNMの定性的、定量的理解
 - Non-Prompt J/ Ψ
 - 大きな不定性: 模型の制限ができていない
 - 低い運動量へのアクセスが課題
- Heavy Flavor measurements
 - Run3ではBottom measurementsに期待
 - 衝突初期状態に敏感な測定ができる可能性がある(磁場など)
 - 他にも重クォークバリオン、エキゾチックハドロン生成