

志垣賢太(真広島大学)

「高度化後の ALICE 実験での物理の可能性」研究会 長崎総合科学大学 2018 年 8 月 17 日

Presentation Outline

- electron and muon reunion at LHC
- ALICE muon measurement major upgrade
 - Muon Forward Tracker
- physics shopping list and approaches via muons
 - mechanism and prerequisites of phase transition
 - quark behavior in strong QCD field
 - quarks interaction in strong QCD field
 - chiral symmetry restoration
 - more exotics
- summary and concluding remarks

e and µ Reunion at LHC Energy

parallel approaches to same physics up to SPS

- muons at central (CMS) rapidity in fixed target exp.
 - e.g. NA38/50/51/60 dimuon spectrometer
- physics emphasis (and people) separated at RHIC
 - broad QGP physics with electrons in central barrel
 - focused topics, e.g. high mass/ $p_{\rm T}$ and spin, with muons
 - e.g. PHENIX "forward" arms
 - Iow momentum µ ID technically challenging
- reunion at LHC
 - low p_T muons within prolonged central Bjorken plateau
 - parallel and complementary approaches (again)

2/39

Muon Measurement at PHENIX

muon arms: 1.2 < |η| < 2.4
minimum p_T ~ 1.0 - 1.5 GeV/c

3/39

Muon Measurement at ALICE

- muon arm: 2.5 < |η| < 4.0</p>
- MFT: 2.5 < |η| < 3.6</p>
- minimum $p_{\rm T} \sim 0.5 \, {\rm GeV/c}$

New Relation between e and µ at LHC

two interesting regimes of quark-gluon phase

- exploration on QCD phase diagram

new opportunity only at LHC energy (and above)

- <u>forward enough</u> for (low p_T) muon measurement
 - e.g. |y| above ~ 3.4 for $p_T < 0.25 \text{ GeV/c}$, p > 4 GeV/c
- not too forward for "central" physics
 - y up to ~ 4 at LHC (~ 2 at RHIC)

Muon Forward Tracker (2021–)

2018/8/17

Muon Forward Tracker Design

- 2.45 < -η < 3.6
- 0.4 m² of MAPS silicon pixel sensors
 - 25 μm x 25 μm , 0.7% X $_0$ per disk
- 5 double sided disks at -z = 460-768 mm

PbPb ~50 kHz, pp ~200 kHz

matching between MFT and muon spectrometer

MFT Structure and Elements

chip (920)/ladder (280)/zone (80)/half plane (20)
/half disk (10) + PS unit (2)/half MFT (2)/MFT (1)

MFT Progresses

- R&D review mostly passed by 2017
- all components prototyped; production started

MFT Control System by Hiroshima

- new architectures in ALICE run 3
 - e.g. gigabit transfer slow control adapter (GBT-SCA)
- hardware control, finite state machine, interlock

MFT Japan

- Hiroshima U, Nara WU, Nagasaki IAS
- various key contributions
 - control system responsibility
 - ladder production and QA at CERN
 - physics, especially in low mass and exotics

Collaboration with MFT France

- Subatech, IPN Lyon, LP Clermont, Irfu Saclay
- leading roles
 - sensor, ladder, disks, cone, barrel, read-out, LV, physics
- existing muon tracking and trigger detectors
 - construction, operation, maintenance, analysis, upgrade
- joint post-doc and PhD students supervision

Physics Attacked/Attacking/To Attack

deconfined quark/gluon phase now in hand

- quark behavior in strong QCD field
 - energy loss and redistribution
- quarks interaction in strong QCD field
 - color Debye screening to melt quarkonia
- chiral symmetry restoration
 - hadron mass modification
- more exotics
 - physics under ultra-intense magnetic field and vorticity

Open Heavy Flavor

current interest: difference bet. charm and beauty

- note: K. Nagashima (Hiroshima) working on electrons in PHENIX
- MFT to provide:
 - charm/beauty meson separation down to $p_T = 0 \text{ GeV/c}$

2018/8/17

e - µ Correlation

- $c\bar{c}/b\bar{b} \rightarrow D\bar{D}/B\bar{B} \rightarrow X e Y \mu$
- long awaited golden channel for open heavy flavor
 - little physics background
- PHENIX data in pp, dAu

- independent triggers till ALICE run 2
- no triggering for PbPb from ALICE run 3

高度化後の ALICE 実験での物理の可能性/ALICE Run 3 以降の µ 粒子測定による物理/志垣賢太 2018/8/17

Physics Attacked/Attacking/To Attack

deconfined quark/gluon phase now in hand

- quark behavior in strong QCD field
 - energy loss and redistribution
- quarks interaction in strong QCD field
 - color Debye screening to melt quarkonia
- chiral symmetry restoration
 - hadron mass modification
- more exotics
 - physics under ultra-intense magnetic field and vorticity

16/39

Quarkonia

- current interest: sequential melting thermometer
- MFT to provide:
 - J/ ψ down to p_T = 1 GeV/c
 - feed down (e.g. $B \rightarrow \psi + X$) identification

ALICE, MFT LOI, CERN-LHCC-2013-014

Physics Attacked/Attacking/To Attack

deconfined quark/gluon phase now in hand

- quark behavior in strong QCD field
 - energy loss and redistribution
- quarks interaction in strong QCD field
 - color Debye screening to melt quarkonia
- chiral symmetry restoration
 - hadron mass modification
- more exotics
 - physics under ultra-intense magnetic field and vorticity

18/39

Chiral Symmetry Restoration

"observations" in finite density regime

- ϕ , ω in nuclei via *p*A (KEK E325)
 - though apparent contradiction to CB-ELSA/TAPS and CLAS-G7
- π in nuclei via (d, ³He)

- no evidence in high temperature regime yet
 - challenging dilepton measurements
 - e.g. PHENIX with RICH, hadron blind detector, ...

Dielectrons at ALICE

first results published from runs 1, 2
pp 7 TeV, 13 TeV, central PbPb 2.76 TeV
very challenging S/B ratio in PbPb

ALICE, arXiv:1805.04407 [hep-ex] submitted to Phys. Lett. B ALICE, arXiv:1807.00923 [hep-ex] submitted to Phys. Rev. C

see TPC related presentations at this workshop

広島大学

Low Mass Dimuons at ALICE

- very clean low mass (ϕ , ω , ρ) $\mu^+\mu^-$ measurement
 - even further improvement with upgrades from run 3

Low Mass Dimuons with MFT

significant improvement

- mass resolution by ~4
- signal/background ratio by ~10
- detailed feasibility study in progress

ALICE, MFT LOI,

CERN-LHCC-2013-014

Physics Attacked/Attacking/To Attack

- deconfined quark/gluon phase now in hand
 - mechanism and prerequisites of phase transition
- quark behavior in strong QCD field
 - energy loss and redistribution
- quarks interaction in strong QCD field
 - color Debye screening to melt quarkonia
- chiral symmetry restoration
 - hadron mass modification
- more exotics
 - physics under ultra-intense magnetic field and vorticity

Something Unknown in p(d)A

AuAu at $\sqrt{s_{NN}}$ = 200 GeV

dAu at $\sqrt{s_{NN}}$ = 200 GeV

- original thought: cold nuclear matter, i.e.
 - <u>not</u> partonic
 - <u>not</u> dense
 - <u>not</u> strongly coupled
 - <u>not</u> hot
- indications of strongly coupled partonic matter??
 - see T. Hirano's presentation at this workshop
 - *note:* only in high multiplicity events; still valid reference

Next Steps with High Multiplicity pp, pA

partonic hydro-dynamical behaviors already seen

- mass dependent spectrum hardening
- baryon enhancement ("anomaly")
- medium properties, e.g. strange chemical potential
 - (multi-)strangeness enhancement
- parton energy loss probably hard to observe
 - path length ~ medium size
- thermal radiation?
- quarkonia suppression?
- high luminosity high statistic data essential
 - < 1% high multiplicity event selection</p>

Physics Attacked/Attacking/To Attack

- deconfined quark/gluon phase now in hand
 - mechanism and prerequisites of phase transition
- quark behavior in strong QCD field
 - energy loss and redistribution
- quarks interaction in strong QCD field
 - color Debye screening to melt quarkonia
- chiral symmetry restoration
 - hadron mass modification
- more exotics
 - physics under ultra-intense magnetic field and vorticity

Ultra-Intense Magnetic Field

U(1) magnetic field

- naturally expected with moving charged sources (nuclei)
- ~ 10¹⁵ T at LHC, ~ 10¹⁴ T at RHIC
 - cf. magnetar surface ~ 10¹¹ T
- could be long-lived in "perfect fluid"

- possible non-linear QED behaviors
 - above electron critical magnetic field $em_e^2 = 4 \times 10^9 T$
- various interesting bysics under discussion
 - chiral magnetic effects
 - quark synchrotron radiation
 - lower QCD critical temperature

Field Intensity and Time Evolution

common approach: cascade models

- spectator contribution dominant
 - 10¹⁴ 10¹⁵ T at LHC
 - short life time < 1 fm/c due to Lorentz contraction</p>
 - though still above m_e²/e after several fm/c

2018/8/17

Field Possibly Longer Lived

Iong lived participant contribution in perfect fluid?

- "static field" approximation w/ Glauber model
 - finite baryon stopping taken into account
 - 10¹³ 10¹⁴ T at LHC

hydro model with local charge nearly available

Vorticity (and/or Magnetic Field)

- angular momentum transfer to Λ polarization
 - spin orbit coupling
- magnetic field also possible Λ polarization source
 - opposite alignment of Λ and $\overline{\Lambda}$

detectable via parity violating A decay

A Polarization Measurements

successful example of precision improvement

- zero consistent with upper limit at 0.2% in 2007
- $\sqrt{s_{NN}}$ dependent polarization found by 2017

広島大学

2018/8/17

高度化後の ALICE 実験での物理の可能性/ALICE Run 3 以降の μ 粒子測定による物理/志垣賢太

Non-Zero (and Large) Vorticity Found

- $\omega = (9 \pm 1) \times 10^{21} \, \text{s}^{-1}$
 - $\sqrt{s_{NN}}$ averaged
 - assuming T = 160 MeV
- magnetic field?
 - implied by Λ and Λ difference
 - though still zero consistent

Implications for Magnetic Field Search

- magnetic field not yet caught
- Iong-lived medium rotation; very promising source

higher statistics required (and planned) at LHC

広島大学

2018/8/17

Experimental Probes of Intense Field

- must originate from initial stages
 - field life time ~ 0.1 fm/c
- must be electro-magnetic

- ideal probe: direct γ/γ^* from pQCD processes
- good reference: γ/γ^* from later stages
 - e.g. π^0 decay γ/γ^* (Dalitz di-electron)

2018/8/17

Direct Photon Polarization

anisotropic decay w.r.t. magnetic field

feasibility study based on QED calculations

- vacuum polarization tensors under magnetic field

- summation for infinite Landau levels
- photon momentum up to ~ GeV
- ref. K.-I. Ishikawa, K. Shigaki, et al., Int. J. Mod. Phys. A28, 1350100 (2013)
- anisotropy ~ o(10⁻¹)

Femto-Spectrometer

- bending power Bdl ~ 10¹⁴ T×10⁻¹⁵ m
- → bending angle ~ $3 \times 10^{-2}/p$ [rad/(GeV/c)]
- detectable as opening angle offset
 - e^+/e^- bent in opposite way around magnetic field axis
 - reaction axis from directional flow (v_1) in forward/backward
 - o(1) degree for o(1) GeV/c particles!

2018/8/17

高度化後の ALICE 実験での物理の可能性/ALICE Run 3 以降の µ 粒子測定による物理/志垣賢太 36

36/39

Key Issue: Significance, *i.e.* Statistics

- marginal at best, in 2012–2016
 - 4 M.Sc. theses in 2013-2016
 - T.Hoshino, A.Tsuji, R.Tanizaki, Y.Ueda
 - 5 B.Sc. theses in 2012–2015
 - A.Tsuji, R.Tanizaki, Y.Ueda, A.Nobuhiro, K.Yamakawa
- higher statistics data available/coming in
 - 1 B.Sc. thesis in 2018

広島大学

2018/8/17

Remarks on Intense Field Search

- wide range of interests; not only LPV/CME(/CVE)
- field time structure: key for physical significance
 - longer-lived participant component in "perfect fluid"?
 - hydro-dynamical model with local charge flow wanted

proposals of experimental detection approaches

- seemingly feasible; simulations and real data analysis
 - direct photon polarization
 - femto-spectrometer
- semi-long term visitor, Q. Y. Shou (SIAP, China)
- high prospects in near-future high statistics data
 - both muons and electrons in ALICE run 3 (2021–)

2018/8/17

38/39

Summary and Concluding Remarks

- muon no longer "forward" probe at LHC
 - electron and muon reunion since fixed target era
 - parallel and complementary probes
- MFT opening new and wide physics windows
 - open heavy flavor, quarkonia, low mass, and continuum
 - covering most (if not all) of whole shopping list
 - even exotics, e.g. intense magnetic field search
- time to invest more human resources
 - balance between hardware and physics
 - synergistically collaborating with MFT France
 - effective use of our new grant (JFY'18 22)

