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Q1 : What is “Early Thermalization” ?
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Color Glass Condensate (CGC)

Color Glass + Plasma = Glasma

(s) Quark-Gluon Plasma

⌧ . 1/Qs ⇠ 0.1fm/c

⌧ . ⌧f ⇠ 10fm/c

Hadronization (quarks → hadrons)

⌧ . ⌧0 ⇠ ⇤�1
QCD
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Can Thermalization in Heavy Ion Collisions be

Described by QCD Diagrams?

Yuri V. Kovchegov∗

Department of Physics, The Ohio State University

Columbus, OH 43210

March, 2005

Abstract

The onset of thermalization in heavy ion collisions in the weak coupling framework
can be viewed as a transition from the initial state Color Glass Condensate dynamics,
characterized by the energy density scaling like ϵ ∼ 1/τ with τ the proper time, to the
hydrodynamics-driven expansion of the quark-gluon plasma with ϵ ∼ 1/τ4/3 (or higher
power of 1/τ for the boost non-invariant case). We argue that, at any order of the
perturbative expansion in the QCD coupling constant, the gluon field generated in an
ultrarelativistic heavy ion collision leads to energy density scaling as ϵ ∼ 1/τ for late
times τ ≫ 1/Qs. Therefore it is likely that thermalization and hydrodynamic description
of the gluon system produced in heavy ion collisions can not result from perturbative QCD
diagrams at these late times. At earlier times with τ ∼ 1/Qs the subleading corrections
to ϵ in 1/τ expansion (terms scaling like ∼ 1/τ1+∆ with ∆ > 0) may become important
possibly leading to hydrodynamic-like behavior of the gluon system. Still, we show that
such corrections do not contribute to the particle production cross section, and are likely
to be irrelevant for physical observables. We generalize our results by including massless
quarks into the system. Thus, it appears that the apparent thermalization of quarks and
gluons, leading to success of Bjorken hydrodynamics in describing heavy ion collisions at
RHIC, can only be attributed to the non-perturbative QCD effects.

∗e-mail: yuri@mps.ohio-state.edu

CGC : 1/t  →  Bjorken : 1/t 4/3 
How?     Impossible?

pQCD expert 
and pioneer of  
AdS/CFT for HIC
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Three concepts clearly distinguished since Chesler-Yaffe (2010)

Fukushima, RoPP (2016)



Aug. 18, 2018 @ Nagasaki

What is “Early Thermalization”

!6

MIT-CTP 4192

Holography and colliding gravitational shock waves in asymptotically AdS5 spacetime

Paul M. Chesler
Department of Physics, MIT, Cambridge, MA 02139, USA

⇤

Laurence G. Ya↵e
Department of Physics, University of Washington, Seattle, WA 98195, USA

†

(Dated: November 17, 2010)

Using holography, we study the collision of planar shock waves in strongly coupled N =4 super-
symmetric Yang-Mills theory. This requires the numerical solution of a dual gravitational initial
value problem in asymptotically anti-de Sitter spacetime.

Introduction.— The recognition that the quark-gluon
plasma (QGP) produced in relativistic heavy ion col-
lisions is strongly coupled [1], combined with the ad-
vent of gauge/gravity duality (or “holography”) [2, 3],
has prompted much work exploring both equilibrium and
non-equilibrium properties of strongly coupled N = 4 su-
persymmetric Yang-Mills theory (SYM), which may be
viewed as a theoretically tractable toy model for real
QGP. Multiple authors have discussed collisions of in-
finitely extended planar shock waves in SYM, which may
be viewed as instructive caricatures of collisions of large,
highly Lorentz-contracted nuclei. In the dual description
of strongly coupled (and large Nc) SYM, this becomes a
problem of colliding gravitational shock waves in asymp-
totically anti-de Sitter (AdS5) spacetime. Previous work
has examined qualitative properties and trapped surfaces
[4–7], possible early time behavior [8–10], and expected
late time asymptotics [11, 12]. As no analytic solution is
known for this gravitational problem, solving the gravita-
tional initial value problem numerically is the only way to
obtain quantitative results which properly connect early
and late time behavior. In this letter, we report the re-
sults of such a calculation, and examine the evolution of
the post-collision stress-energy tensor.

Unlike previous work considering singular shocks with
vanishing thickness [5, 9], or shocks driven by non-
vanishing sources in the bulk [5, 6], we choose to study
planar gravitational “shocks” which are regular, non-
singular, source-less solutions to Einstein’s equations.
Equivalently, we study the evolution of initial states in
SYM with finite energy density concentrated on two pla-
nar sheets of finite thickness (and Gaussian profile), prop-
agating toward each other at the speed of light. The
dual description only involves gravity in asymptotically
AdS5 spacetime; the complementary 5D internal mani-
fold plays no role and may be ignored. Consequently, our
results apply to all strongly coupled 4D conformal gauge
theories with a pure gravitational dual description.

Gravitational description.— Di↵eomorphism invari-
ance plus translation invariance in two spatial directions
allows one to write the 5D spacetime metric in the form

ds
2 = �A dv

2+⌃2
⇥
e
B

dx2
? + e

�2B
dz

2
⇤
+2dv (dr+Fdz) ,

(1)

where A, B, ⌃, and F are all functions of the bulk radial
coordinate r, time v, and longitudinal coordinate z. We
employ generalized infalling Eddington-Finkelstein coor-
dinates. Lines along which all coordinates except r are
constant are infalling radial null geodesics; the radial co-
ordinate r is an a�ne parameter along these geodesics.
At the boundary, located at r = 1, v coincides with
time in the dual quantum field theory. The geometry in
the bulk at v � 0 is the causal future of v = 0 on the
boundary. The ansatz (1) is invariant under the residual
di↵eomorphism r ! r + ⇠, with ⇠ an arbitrary function
of v and z.

For a metric of the form (1), Einstein’s equations (with
cosmological constant ⇤ ⌘ �6) imply

0 = ⌃00 + 1
2 (B0)2 ⌃ , (2a)

0 = ⌃2 [F 00 � 2(d3B)0 � 3B
0
d3B] + 4⌃0

d3⌃ ,

� ⌃ [3⌃0
F

0 + 4(d3⌃)0 + 6B
0
d3⌃] , (2b)

0 = ⌃4 [A00 + 3B
0
d+B + 4] � 12⌃2⌃0

d+⌃

+ e
2B
�
⌃2

⇥
1
2 (F 0)2� 7

2 (d3B)2�2d
2
3B

⇤

+ 2(d3⌃)2 � 4⌃
⇥
2(d3B)d3⌃ + d

2
3⌃

⇤ 
, (2c)

0 = 6⌃3(d+⌃)0 + 12⌃2(⌃0
d+⌃ � ⌃2) � e

2B
�
2(d3⌃)2

+ ⌃2
⇥
1
2 (F 0)2+(d3F )0+2F

0
d3B� 7

2 (d3B)2�2d
2
3B

⇤

+ ⌃
⇥
(F 0�8d3B) d3⌃ � 4d

2
3⌃

⇤ 
. (2d)

0 = 6⌃4(d+B)0 + 9⌃3(⌃0
d+B + B

0
d+⌃)

+ e
2B
�
⌃2[(F 0)2+2(d3F )0+F

0
d3B�(d3B)2�d

2
3B]

+ 4(d3⌃)2 � ⌃
⇥
(4F

0+d3B) d3⌃ + 2d
2
3⌃

⇤ 
, (2e)

0 = 6⌃2
d
2
+⌃ � 3⌃2

A
0
d+⌃ + 3⌃3(d+B)2

� e
2B

�
(d3⌃ + 2⌃d3B)(2d+F + d3A)

+ ⌃
⇥
2d3(d+F ) + d

2
3A

⇤ 
, (2f)

0 = ⌃ [2d+(d3⌃) + 2d3(d+⌃) + 3F
0
d+⌃]

+ ⌃2 [d+(F 0) + d3(A
0) + 4d3(d+B) � 2d+(d3B)]

+ 3⌃ (⌃d3B + 2d3⌃) d+B � 4(d3⌃)d+⌃ , (2g)

where, for any function h(v, z, r), h
0 ⌘ @rh and

d+h ⌘ @vh + 1
2A @rh , d3h ⌘ @zh � F @rh . (3)
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the di↵eomorphism trans-
forming the single shock metric (8) from Fe↵erman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B+ + B�. We choose the
initial time v0 so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a4 and f2 may be found analytically,

a4 = � 4
3 [h(v0+z)+h(v0�z)] , f2 = h(v0+z)�h(v0�z).

(10)

A complication with this initial data is that the metric
functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a4 a small positive constant �.
This introduces a small background energy density in
the dual quantum theory. Increasing � causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is �z = 6.2/µ. We chose
� = 0.014 µ

4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, Tbkgd = 0.11 µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v = 0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ

4
< 10�4, and has slope 1. Ev-

idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where Pk has its
maximum, it is roughly 5 times larger than P?. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, Pk is more than 3 times
larger than P?.

The fluid/gravity correspondence [17] implies that at
su�ciently late times the evolution of T

µ⌫ will be de-
scribed by hydrodynamics. To test the validly of hydro-

Validity of hydro does not 
require thermalization nor 
isotropization!

One of the most important holographic papers

Not known in other fields
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Q2 : Physics of isotropization?
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Not a new state of matter 
Phase diagram? 
→ A chart of approx. schemes

A new regime of perturbative and nonlinear theory

Small coupling constant  
Resummation (BFKL / DGLAP)

Large amplitude  
Resummation (classical EoM)
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Stasto-Golec-Biernat-Kwiecinski Plot

Geometric Scaling

Q2
s(x) = Q2

0(x/x0)
��

<latexit sha1_base64="0ygpNXTULBYyy4NbP1oR3HMCiBY="></latexit><latexit sha1_base64="0ygpNXTULBYyy4NbP1oR3HMCiBY="></latexit><latexit sha1_base64="0ygpNXTULBYyy4NbP1oR3HMCiBY="></latexit><latexit sha1_base64="0ygpNXTULBYyy4NbP1oR3HMCiBY="></latexit>

Scaling variable

CGC already seen? 
Extended geometric scaling
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Finding CGC =

Finding Scaling Properties (with Qs)

Possible in ep, pA, etc, but not so clear in AA
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Finding CGC =

Finding necessity of special class of  
          resummation (Wilson lines)

Will be discussed later
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Early-time dynamics of heavy-ion collision  
described in the CGC approximation

Initial longitudinal pressure is negative
Isotropic plasma has positive pressure

cf. ridge
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sequent results do not depend on this choice as long as
Qs⌧0 ⌧ 1. In order to simplify the color algebra, the
simulation is done for an SU(2) gauge group, instead of
SU(3) for actual QCD.

We work in Fock-Schwinger gauge, A⌧ = 0, that gen-
eralizes the temporal gauge to the (⌧, ⌘,x?) system of
coordinates, and has the advantage of treating the two
nuclei on the same footing. On the lattice, the vector
potentials are exponentiated into link variables that con-
nect adjacent lattice sites in order to preserve an exact
local gauge symmetry. However, exponentiating the vec-
tor potentials in Eqs. (6) introduces some small viola-
tions of Gauss’s law DµEµ = 0. We restore Gauss’s law
by projecting the initial electrical fields on the subspace
that obeys the constraint, using the algorithm described
in Ref. [16].

ENERGY-MOMENTUM TENSOR

From the solutions of the classical Yang-Mills equa-
tions at some time ⌧ , we compute the expectation value
of the components of the energy momentum tensor. In
order to increase the e↵ective statistics, we average both
over the random numbers c⌫�k of Eqs. (6) and over the
lattice volume. At all times, the transverse and longi-
tudinal pressures are related to the energy density by
✏ = 2PT + PL (by construction), and Bjorken’s law,

@✏

@⌧
+

✏+ PL

⌧
= 0 , (8)

is satisfied as a consequence of energy and momentum
conservation.

The energy-momentum tensor computed in this ap-
proach contains a zero point contribution, that exists
even when the background field in Eqs. (3) is set to zero.
We subtract it out by performing the same calculation
twice: with a background field generated with a non-zero
value of Qs and with the background field set to zero.

After this pure vacuum subtraction, ✏ and PL still
contain subleading divergences that behave as ⌧�2. Al-
though we cannot compute the corresponding countert-
erms from first principles at the moment, their form can
be predicted. From ✏ = 2PT +PL , the counterterms for ✏
and PL must be equal. Then Bjorken’s law (8) constrains
this common counterterm to be of the form A/⌧2. We fit
the prefactor A in order to make ✏ and PL finite in the
limit ⌧ ! 0+. This choice of A also makes the resummed
and Leading Order results very close when ⌧ ! 0+, which
is expected since the higher order corrections should be
important only at later times, after the fluctuations have
been amplified by the Weibel instability.

To summarize our procedure, we do

hPT iphys. = hPT i backgd.
+ fluct.

�hPT i fluct.
only

h✏, PLiphys. = h✏, PLi backgd.
+ fluct.| {z }

computed

�h✏, PLi fluct.
only| {z }

computed

+A ⌧�2

| {z }
fitted

.

(9)
It should be noted that the zero point contribution

also behaves as ⌧�2 at small times and is almost inde-
pendent of the coupling, while the physical contribution
is of order Q4

s/g
2. At large coupling and small times,

the physical contribution is much smaller than the two
terms that we must subtract, and therefore the accuracy
on the di↵erence is severely limited by the statistical er-
rors. This limits how large the coupling constant g can
be in practical simulations. The results presented below
are for g = 0.1 (figure 3, Nconf = 200) and g = 0.5 (figure
4, Nconf = 2000), that are both much smaller than the
expected value at the LHC (g ⇡ 2).
To provide more intuition on the relevant timescales,

we also provide the time in fermis/c on the upper hori-
zontal scale of the figures 3 and 4. The calibration of this
scale requires that one chooses the value of Qs in GeV,
here taken to be Qs = 2 GeV, a reasonable value for
nucleus-nucleus collisions at LHC energies. In order to
highlight the e↵ect of the quantum corrections, we also
show the Leading Order results (dotted curves).
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FIG. 3. Evolution of the ratios PT,L/✏ for g = 0.1 (↵s =

8 · 10�4). The bands indicate statistical errors, estimated
as the result obtained before any subtraction divided by the
square root of the number of samples. The dotted curves
represent the LO result.

In both cases, ✏ = PT = �PL at ⌧ = 0+. After a time
of order Q�1

s , the longitudinal pressure turns positive and
stays mostly positive afterwards. However, for g = 0.1 it
always stays much smaller than the transverse pressure
(PL/PT ⇡ 0.01), which implies that the system is almost
free streaming in the longitudinal direction: the energy

4

density decreases approximately as ⌧�1. Moreover, the
result are always very close to the LO results, suggesting
that at such small couplings the Weibel instability does
not play an important role over the timescales we have
considered.
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FIG. 4. Evolution of the ratios PT,L/✏ for g = 0.5 (↵s =

2 · 10�2).

Even though g = 0.5 is still a very weak coupling in
QCD, there is drastic increase in the ratio PL/PT , that
now approaches 0.60 at times of the order of one fm/c.
As a consequence, ✏ falls faster than in free streaming
because of the energy reduction due to the work done
by the longitudinal pressure. Such a degree of residual
anisotropy can easily be coped with in hydrodynamics
with moderate viscous corrections. Note that the pres-
sures have some residual oscillations on shorter timescales
of order Q�1

s , that do not a↵ect the long time dynamics.
The comparison with the LO result now indicates sizable
deviations when Qs⌧ & 1. Note that the LO results are
identical for g = 0.1 and g = 0.5, since at this order the
energy-momentum tensor is given by purely classical field
configurations, from which the coupling dependence can
be entirely factored out.

We have also fitted the time dependence of ✏ for
g = 0.5 by assuming that it is governed by hydrodynam-
ics including the first correction due to shear viscosity,
✏ = a/⌧4/3 � 2⌘0/⌧2. This gives an estimate of the shear
viscosity ⌘ = ⌘0/⌧ from which we obtain the dimension-
less ratio ⌘/✏3/4 ⇡ ⌘0/a3/4 ⇡ 0.3, which is much smaller
than the LO perturbation theory value, of order ⇠ 300
for g = 0.5 (see Ref. [17] for ⌘. For ✏, we use the Stefan-
Boltzmann formula). This is possibly a manifestation of
the anomalously small viscosity conjectured in Ref. [18]
for systems made of strong disordered fields.

Although the figure 4, that exhibits isotropization, was
obtained for a coupling which is still much smaller than
the ↵s ⇡ 0.3 (i.e. g ⇡ 2) that is expected at the LHC,
we do not expect important qualitative modifications by

going at larger coupling. Moreover, the timescales should
not vary much either (and if anything, one would expect
them to become smaller) since the g dependence is to a
large extent cancelled by the fact that the background
fields behave as g�1.

CONCLUSIONS AND OUTLOOK

In this paper, we have presented the first NLO-
resummed results in the Color Glass Condensate frame-
work for the energy-momentum tensor shortly after a
heavy ion collision. At very small coupling, the system
settles on a free-streaming expansion curve, which is not
compatible with ideal hydrodynamics.
However, by increasing the coupling constant, one

reaches a regime of viscous hydrodynamical expansion,
after a fairly short transient regime that lasts about
1 fm/c for realistic values of the saturation momentum.
This hydrodynamical regime sets in for very small val-
ues of the coupling constant (g = 0.5,↵s = 2 · 10�2 in
the plots presented above). Although it was not tech-
nically feasible to have a more realistic value of g, we
conjecture a similar behavior at larger g. Conversely, the
experimental evidence for hydrodynamical flow in heavy
ion collisions does not necessarily imply that the system
is strongly coupled, since weak coupling techniques and
resummations already predict such a behavior.
More systematic studies are necessary in order to as-

sess how one goes from free streaming at very weak cou-
pling to hydrodynamical behavior for larger couplings.
Moreover, the present study does not tell how far the
system is from local thermal equilibrium when the hy-
drodynamical behavior starts. It would be highly inter-
esting to compute observables that can provide informa-
tions on this question. Recent works, such as Refs. [19–
24], have investigated the possibility of the formation of
Bose-Einstein condensate when starting from a CGC-like
initial condition, since such a state is overpopulated. It
would definitely be important to assess this question in
the present framework. Another important issue is to de-
velop a rigorous procedure for the subtractions that we
have performed by hand in order to obtain a finite energy-
momentum tensor at short times. Moreover, higher or-
der quantum corrections not included here are expected
to become important at late times. Including them is
beyond the scope of classical statistical methods, but at
the small couplings we have considered we do not expect
them to be important at the times relevant for pressure
isotropization.
This study is related to other recent works on the e↵ect

of instabilities on the early time behavior in heavy ion
collisions, in particular Refs. [25–30]. The approach we
have pursued, where one solves the classical Yang-Mills
equations with fluctuating initial conditions, is very close
to that of Ref. [30], but di↵ers from it in the choice of the

Gelis-Epelbaum, PRL (2013), see also a plenary talk @ QM2013

weak coupling strong coupling

However, UV contamination unavoidable
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Maybe PL / PT ~ 0.6 or smaller (free streaming?)

Q : Why not very small ? 
A: Very viscous ! → aHydro

Please tell me what can be measured to probe it ?

I asked this question to Berndt 4 years ago,  
and his answer was “balance function.”

Any observable to quantify anisotoropization ? 
Anything sensitive to initial negative PL ?



!15

Q3 : Physics of hydrodynamization?
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1
Anisotropic Hydrodynamics
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Fukushima, RoPP (2016) based on Strickland
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Evolution to the Quark-Gluon Plasma 34

with �2 = ⌧⇡/(2⌘). This equation can be further simplified with the conformality
assumption in which �2 / T�4 and we can use T / ⌧�1/3 for the term proportional
to �/�2 in the construction of the 2nd-order theory. Then, the ⌧ derivative gives a
factor 5/3, and we eventually have,

d�

d⌧
= �

�

⌧⇡
�

4�

3⌧
+

4⌘

3⌧⇡⌧
. (79)

These are simple but useful equations for the benchmark purpose. Any extension
of the hydrodynamic equations with resummation with respect to anisotropy should
reproduce them once expanded in terms of small anisotropy, which will be checked
later.

4.2. Dissipative Terms and Anisotropy

The ordinary hydrodynamic equations have only single P assuming isotropy. The
tensor decomposition in (72) suggests that PL 6= PT could be related to some
dissipative terms from ⇡µ⌫ , and this is indeed true. Therefore, if we improve
hydrodynamics from the 1st-order theory to the 2nd-order theory, we may have a
better situation to treat a larger deviation of PL/PT 6= 1, but eventually, we need
reorganize the derivative expansion shifting the expansion reference point. In general
circumstances such reorganization is a tough problem but the kinetic equation can
provide us with a useful guide to the right path.

4.2.1. Hydrodynamic interpretation of anisotropy Interestingly, (77) is a hydrody-
namic counterpart of (38). We note that (38) is an exact relation regardless of hy-
drodynamics, and this means that, by taking a di↵erence between (38) and (77), we
have P � � = PL. We here assume that P appearing in the previous subsection is
identifiable to an average; (2PT + PL)/3. Also, in the 1st-order theory, ⌧⇡ ! 0, and
this implies that two terms in (79) should cancel, leading to a relation; � = 4⌘/(3⌧)
[104]. Combining these relations, we finally reach the following;

PT � PL =
3

2
� =

2⌘

⌧
. (80)

This clearly shows that PL/PT 6= 1 should be accompanied by a shear viscosity,
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Definition of “Hydrodynamization” is unclear

Hydrodynamization occurs for viscous hydro 
far earlier than ideal hydro…

Hydrodynamization is a theoretical concept  
I do not think there is any observable for this…

For more details please ask Hirano-san, Nonaka-san
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Q4 : Physics of thermalization?
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Distribution function of gluons

Local thermal eq. : f(p) ⇠ 1

ep·u(x)/T (x) � 1
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CGC initial condition : f(p) ⇠ p�⌫
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perturbative tail

Time evolution ?
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Inverse Particle Cascade

Energy Cascade

Fukushima, RoPP (2016) based on Berges

Fixed-points of the Boltzmann equations ~ Power law  
                  (Kolmogorov-Zakharov spectrum)

thermalized here
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Initial-time numerical simulation is reliably done  
as long as the spectrum is power-law.

UV divergence if the spectrum is power-law.

No simulation valid over the whole momentum region

small-p large-p
Dense gluon
Classical statistical sim.

Dilute gluon
Boltzmann equations
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KZ Spectrum 
   ~ (Wave) Turbulence ~ Non-thermal Fixed-Point
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Abstract

In ultra-relativistic heavy ion collisions, the matter formed shortly after the collision is

a dense, out of equilibrium, system of gluons characterized by a semi-hard momentum scale

Qs. Simple power counting arguments indicate that this system is over-occupied: the gluon

occupation number is parametrically large when compared to a system in thermal equilibrium

with the same energy density. On short time scales, soft elastic scatterings tend to drive the

system towards the formation of a Bose–Einstein condensate that contains a large fraction of

the gluons while contributing little to the energy density. The lifetime and existence of this

condensate depends on whether inelastic processes, that occur on the same time scale as the

elastic ones, preferably increase or decrease the number of gluons. During this overpopulated

stage, and all the way to thermalization, the system behaves as a strongly interacting fluid, even

though the elementary coupling constant is small. We argue that while complete isotropization

may never be reached, the system may yet evolve for a long time with a fixed anisotropy

between average longitudinal and transverse momenta.

1 Introduction

One of the central theoretical issues in the description of heavy ion collisions is to understand
how the partons that are freed by the collisions evolve into a thermalized system amenable to an
hydrodynamical description. Let us recall that most of the produced partons originate from the
small x components of the wavefunctions, that are dominated by gluon saturation and occupation
numbers of order 1/αs [1–3]. Such wavefunctions are well described by the Color Glass Condensate
(CGC) effective field theory [4]. This effective theory allows in particular for the calculation of
the energy-momentum tensor immediately after the collision. Because the chromo-electric and

1

Overpopulation (2011)

Observable ?  Some value of n
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Is “turbulence” observable?

In principle yes :  
       Early-time gluons with power-law spectrum  
       may affect hadron spectrum and correlation

Caveats : 
        * Perturbative calculations → Power-law 
        * Hard to tell power-law from exponential
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CGC in pA (or forward AA)
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6 Flow harmonics and higher order contributions

We follow the calculations of the flow observables, vn{m}, according to Refs. [39, 40]. The
flows are characteristic angular distributions defined from the m-particle inclusive spectra,
which is in the dipole model given by

dmN

d2p?1 · · · d
2p?m

=
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◆m mY
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(6.1)

where B is a dipole model parameter, which is typically of the order of the nucleon size
⇠ 1 fm ⇠ (0.2 GeV)�1, and we take

p
B = 2 GeV�1. The general analysis for the flow

properties is presented in Ref. [44] and the n-th moment of the m-particle correlation is
introduced as
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mY

i=1

Z
d2p?i

(2⇡)2
ein(�1)i+1�i

dmN

d2p?1 · · ·p?m

, (6.2)

where �i represents the azimuthal angle, i.e. p?i = |p?i|(cos�i, sin�i). Then, in the dipole
model, we can perform the momentum integrations to find the following expression,
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Here, using the regularized generalized hypergeometric function, we defined,
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where ✓ is the azimuthal angle of x?.
Let us first consider the case with m = 2 using our large Nc expansion (4.13). Using

the leading order 1/Nc results (4.13), we can write n{2} as n{2} = D
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n , where
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with p, q = ±. The last part of the integrand is a function of modulus of various combi-
nations of x?1, x?2, y?1, y?2. Here, it is important to understand that any term in the
integrand which contains only functions of |x?i � y?i| would vanish due to the complex
phase in K

(±)
n (x?i � y?i).
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n-th harmonics of m-particles  (nucl-th/0105040)
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p
B = 2GeV�1 ⇠ nucleon size

Dipole distribution inside of a proton
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!27Figure 3. 2-particle flow harmonics using the analytical (unapproximated) expression (3.26) and
our formulae (4.14). The saturation momentum Qs is the one defined in Eq. (6.11) as in Ref. [43].

One could think of D(++)
n and D

(��)
n in a similar manner but they are also vanishing because

of the phase factors in K
(±)
n . The last part of the integrand is a function of modulus of

various combinations of x?1, x?2, y?1, y?2. Here, it is crucially important to understand
that any term in the integrand which is factorized into a function of |x?i�y?i| alone would
vanish due to the phase factors in K

(±)
n (x?i � y?i) in the factorized integrations.

Because there is no finite contribution of disconnected parts in the two particle corre-
lation, we can immediately compute the two particle flow harmonics, vn{2}, from

vn{2} =

s
n{2}

0{2}
, (6.8)

where the denominator is obtained with Eq. (6.5), i.e. if we keep using the expanded ex-
pression up to the N

�2
c order for later convenience, we have

0{2} = D
2
0 +D
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0 . (6.9)

Here, we defined
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Of course, up to this order, keeping D
(+�)
0 in the denominator is in principle irrelevant

since it gives a higher order correction which we should neglect.
We summarize our numerical results in Fig. 3. We have performed the 8 dimensional

numerical integration with respect to {x?i,y?i} using the Monte-Carlo method by taking
108 sampling points. To draw Fig. 3 we chose ⇤̄ = 0.241 GeV and pmax = 2 GeV in accord
with Ref. [43]. We also note that, only in this section, we change the definition of the
saturation momentum from our original Qs in Eqs. (2.2) and (2.3) to new Q̄s defined by

Q̄
2
s =

1

2�(|
p
2/Qs|)

(6.11)
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Fukushima-Hidaka (2017) motivated by Dusling-Mace-Venugopalan (2017)
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Recent developments along the same lines

v22n{2} / N0
ch
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CGC-based prediction not depending on a dipole model

Systematics can tell the CGC-type correlation from hydro
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FIG. 3. Comparison to the CMS pp photon data at
p
s = 2.76 TeV [27]. The central line is obtained by multiplying our

numerical results with a K-factor K = 2.4. Here, and in subsequent plots, the band represents a 15% a systematic uncertainty
of our calculation. See text for discussion.

FIG. 4. Comparison to the ATLAS and CMS pp photon data at
p
s = 7 TeV [29, 30] across several rapidity bins. The central

lines are obtained by multiplying our numerical results with a K-factor K = 2.4.

In summary, we have quantified the dominant contributions to inclusive photon production at LO and NLO. We
found that the contribution of the NLO channel is significantly larger than the LO at central rapidities at the LHC.
This is because for k�?  50 GeV, the results are sensitive to small-x values in the proton that have high gluon
occupancy. We showed further that coherent rescattering contributions in the CGC that break k?-factorization are
of the order of 10%. The k?-factorized framework gives good agreement with the CMS and ATLAS data, within
the systematic uncertainties discussed above. Future publications will extend the analysis presented here to make
predictions for p+A collisions and high multiplicity p+p and p+A collisions. Prior studies have only considered
LO contributions to inclusive photon production. Another important avenue where progress is required is in the
computation of higher order e↵ects which formally are NNLO in this approach but are essential to quantify running

6

FIG. 3. Comparison to the CMS pp photon data at
p
s = 2.76 TeV [27]. The central line is obtained by multiplying our

numerical results with a K-factor K = 2.4. Here, and in subsequent plots, the band represents a 15% a systematic uncertainty
of our calculation. See text for discussion.

FIG. 4. Comparison to the ATLAS and CMS pp photon data at
p
s = 7 TeV [29, 30] across several rapidity bins. The central

lines are obtained by multiplying our numerical results with a K-factor K = 2.4.

In summary, we have quantified the dominant contributions to inclusive photon production at LO and NLO. We
found that the contribution of the NLO channel is significantly larger than the LO at central rapidities at the LHC.
This is because for k�?  50 GeV, the results are sensitive to small-x values in the proton that have high gluon
occupancy. We showed further that coherent rescattering contributions in the CGC that break k?-factorization are
of the order of 10%. The k?-factorized framework gives good agreement with the CMS and ATLAS data, within
the systematic uncertainties discussed above. Future publications will extend the analysis presented here to make
predictions for p+A collisions and high multiplicity p+p and p+A collisions. Prior studies have only considered
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Benic-Fukushima-Garcia-Montero-Venugopalan (2018)

Good agreement!  More soft photons needed!
Many “CGC” calculations assume the kT factorization

Photon in pp at LHC
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Compton Scattering Annihilation

(qg ! q�) (qq̄ ! g�)

/ ↵e↵s nq(1� nq)ng / ↵e↵s nqnq̄(1 + ng)

+ LPM
+ crossed

large Nc
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Gauge choice: A ⇠ ⇢A ⇠ �(x+)

q
�

⇥⇥p A

q

CGC

U ⇠ 1 + igA+
1

2
(igA)2 + · · ·

Gelis-Mehtar-Tani (2006)

(Coulomb gauge + Light cone gauge)
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⇥⇥p A

Multiple Scattering with CGC

q

�

⇥⇥p A

Gelis-Jalilian-Marian (2002)

⇠ ↵enqhUU†i

⇠ ↵enqnq̄hUU†UU†i
Annihilation process 
suppressed by quark distribution
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×
[
D(p⊥ − q⊥ − k⊥) + (1 − 2e−B1)(2π)2δ(p⊥ − q⊥ − k⊥)

]
.

(44)

Another simplification can be achieved by neglecting the term in exp(−B1) since
B1 ∼ Q2

s/Λ2
QCD

≫ 1 appears in the exponential with a negative sign. If one
introduces [41]

C(l⊥) ≡
∫

d2x⊥eil⊥·x⊥e−B2(x⊥) =

∫
d2x⊥eil⊥·x⊥

〈
U(0)U †(x⊥)

〉
ρ

, (45)

the inclusive cross section can be rewritten as

dσq→qγ
incl =

d3k

(2π)32k0

d3q

(2π)32q0

e2πR2

2p−
〈
tr(L†L)

〉
spin

×2πδ(p− − q− − k−)C(p⊥ − q⊥ − k⊥) .

(46)

Assuming again that the incoming quark transverse momentum p⊥ is zero and
neglecting the quark mass, one can perform the integrals over q+, k+, q− using
the delta functions. There is however a complication due to collinear singular-
ities, i.e. singularities that show up when the emitted photon is parallel to the
outgoing quark. It is convenient to trade the transverse momentum of the final
quark for the total transverse momentum of the final state, i.e. l⊥ ≡ q⊥ + k⊥.
In terms of this new variable, we have

1

πR2

dσq→qγ
incl

d2k⊥
=

e2

(2π)5k2
⊥

∫ 1

0
dz

[1 + (1 − z)2]

z

∫
d2l⊥

l2⊥ C(l⊥)

[l⊥ − k⊥/z]2
(47)

where z ≡ k−/p− and [1 + (1 − z)2]/z is the standard leading order photon
splitting function. Eq. (47) is our main result. Note that C(l⊥) behaves like
1/l4⊥ at large l⊥ which ensures that the integral converges at large momentum
transfer. In this formula, C(l⊥) is the only object that depends on the struc-
ture of the color sources describing the target nucleus. In particular, all the
quantum evolution effects would go into this object via the averaging procedure
in Eq. (45). One can also note that this result exhibits the standard collinear
denominator [l⊥ − k⊥/z]2 that vanishes if the photon is emitted collinearly to
the quark. This aspect of the result is of course not affected by the description
of the target nucleus as a color glass condensate.

In the soft photon limit, one can see the decoupling of the photon emission
subprocess from the quark scattering part. The latter agrees with the quark-
nucleus scattering cross-section calculated in [44].

It is instructive to perform the “perturbative limit” of this result. This
regime is reached when the transverse momentum l⊥ transferred between the
nucleus and the quark is large compared to the saturation momentum Qs. In
this limit, we have [41]

C(l⊥) ≈
2Q2

s

l4⊥
. (48)

11

q
�

⇥⇥p A

l

qk

q+k

where P(x⊥) is a function that describes the transverse profile of the nucleus.
It can be thought of as a function whose value is 0 outside the nucleus and 1
inside the nucleus. The object B1 appearing in this expression is given by

B1(x⊥) ≡ Q2
s

∫
d2z⊥G2

0(x⊥ − z⊥) ∼
Q2

s

Λ2
QCD

, (21)

with Q2
s ≡ g4(tata)

∫ +∞
−∞

dz−µ2(z−)/2 the saturation scale4 (the integral of µ2

over z− is the number density of color sources per unit of transverse area in the
target nucleus). Similarly, we have

〈
(U †(x⊥) − 1)(U(y⊥) − 1)

〉
ρ

= P(x⊥)P(y⊥)
[
1 + e−B2(x⊥−y⊥) − 2e−B1

]
(22)

with the definition

B2(x⊥ − y⊥) ≡ Q2
s

∫
d2z⊥[G0(x⊥ − z⊥) − G0(y⊥ − z⊥)]2

≈
Q2

s(x⊥ − y⊥)2

4π
ln

( 1

|x⊥ − y⊥|ΛQCD

)
. (23)

In the above equations, G0(z⊥ − y⊥) is the free propagator in two dimensions,
defined by

∂2

∂z2
⊥

G0(z⊥ − y⊥) = δ(z⊥ − y⊥) (24)

and given explicitly by

G0(z⊥ − y⊥) = −
∫

d2k⊥

(2π)2
eik⊥·(z⊥−y⊥)

k2
⊥

. (25)

Note that the objects evaluated in Eqs. (20) and (22) are matrices in the funda-
mental representation of SU(Nc) that are proportional to the unit matrix. In
the calculation of cross-sections, one must sum over the color of the outgoing
quark and average over the color of the incoming quark, which amounts to tak-
ing the color trace of this matrix and dividing by Nc. Therefore, Eqs. (20) and
(22) can be seen as scalars giving directly the result of this procedure.

4 Cross-Section

At first sight, the square of the delta function δ(p− − k− − q−) that appears
when we square the amplitude might seem a little worrisome. However, this is

4 The saturation momentum would acquire a dependence on the rapidity of the quark via
quantum evolution effects not included explicitly here. Indeed, the quark is sensitive to all
of the nucleus constituents that have a rapidity between the quark rapidity and the nucleus
rapidity.

7

+ crossed diagram 
   (photon emitted first)

A note on the photon production from CGC

This is a note on the photon production from CGC.

I. PREPARATION

The Feynman propagator is expressed as

GF (x, y) = G0
F (x�y)+

Z
d4z �(z+)

n
✓(x+)✓(�y+)[U †(z?)�1]�✓(�x+)✓(y+)[U(z?)�1]

o
G0

F (x�z)�+G0
F (z�y) . (1)

In later calculations what we need is:

G>(x, y) ⌘ GF (x
+ > 0, y+ < 0) =

Z
d4z �(z+)G0

F (x� z)�+U(z?)G
0
F (z � y) . (2)

G<(x, y) ⌘ GF (x
+ < 0, y+ > 0) = �

Z
d4z �(z+)G0

F (x� z)�+U†(z?)G
0
F (z � y) . (3)

II. GELIS-JALILIAN-MARIAN FORMULA

1

A?

d�q!q�

d2k?
=

2↵e

(2⇡)4k2
?

Z 1

0
dz

1 + (1� z)2

z

Z
d2l?

l2?C(l?)

(l? � k?/z)2
. (4)

III. BENIC-FUKUSHIMA FORMULA

The amplitude is

hk,�|pAi = efg

Z
d4x eik·x

Z
d4y tr

⇥
/✏(�)(k?)GF (x, y) /A(y)GF (y, x)

⇤
. (5)

From the kinematical reason only the following will remain non-zero:

hk,�|pAi = �efg

Z
d4p d4l d4l0

(2⇡)12
✓(l0+)✓(k+ � l0+)(2⇡)�(�p+ � l+ + l0+)(2⇡)�(l+ � l0+ + k+)

⇥ tr
⇥
/✏(�)(k?)G

0
F (l

0)�+U(�p? � l? + l0?)G
0
F (p+ l) /A(p)G0

F (l)�
+U †(�l? + l0? � k?)G

0
F (l

0 � k)
⇤
.

(6)

This trace part can be decomposed into the color trace given by

T (k?,p?, l?, l
0
?) ⌘ tr

⇥
U(�p? � l? � l0?)⇢p(p?)U

†(�l? + l0? � k?)
⇤
, (7)

and the Dirac trace given by

Wµ(k, p, l, l0) ⌘ tr
⇥
�µ(/l 0 +m)�+(/p+/l +m)/pt(/l +m)�+(/l 0 � /k +m)

⇤
. (8)

Because Aµ(p) has large enhancement at p? ⇠ 0, we approximate p? ⇠ 0 when p? appears in the numerator. Also,
we set m = 0 when m appears in the numerator. These approximations significantly simplify the final expression.
Then, we can compute Wµ(k, p, l, l0) and its transverse components are

W? ⇡ �16k+l2?(l
0+k? + k+l0?) . (9)

We can show that W� = 0 and so W 2 will have only the transverse contributions.
The amplitude then takes the following form:

hk,�|pAi ⇡ 16i efg

Z
d3p d3l d3l0

(2⇡)9

Z k+

0

dl0+

2⇡

l2?(l
0+k? � k+l0?) T (k?,p?, l?, l

0
?)

(p� + i✏)p2
?

⇥ 1

(l02 �m2 + i✏)[(p+ l)2 �m2 + i✏](l2 �m2 + i✏)[(l0 � k)2 �m2 + i✏]
,

(10)
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Figure 2: Behavior of the correlator C(k⊥) as a function of k⊥. In this plot,
the value of Qs is such that Qs/Λ

QCD
= 10. Circles: computed value of C(k⊥).

Solid line: the “perturbative” value C(k⊥) ≈ 2Qs/k4
⊥, valid if k⊥ ≫ Qs.

Using this result, we have:

dσq→qγ
incl

d2k⊥

∣∣∣
pert.

=
2Nhe2

qαemα2
S

π2

C
F

k2
⊥

1∫

0

dz
1 + (1 − z)2

z

∫
d2l⊥

l2⊥[l⊥ − k⊥/z]2
(49)

where eq is the quark electric charge in units of the electron charge, and where
Nh ≡ πR2

∫
dz−µ2(z−) is the total number of hard color sources in the target

nucleus. Therefore, this expression has all the features of the bremsstrahlung of
a photon by a quark scattering off a parton inside the nucleus with the exchange
of a gluon in the t-channel (this term is the dominant one at large center of mass
energy).

In Eq. (47), the only factor that depends crucially on the saturation hypoth-
esis for the nucleus is the factor C(l⊥). Indeed, this term contains all the de-
pendence on the saturation scale, as well as the modifications of the transverse
momentum spectrum at scales below Qs. The transverse momentum depen-
dence of this object is illustrated in figure 2. In order to observe effects due to
this factor, it would be useful to measure both the radiated photon and the jet
induced by the outgoing quark. The photon-jet correlations, and in particular
the distribution of their total transverse momentum l⊥ = q⊥+k⊥, would indeed
enable one to extract in a rather direct way the function C(l⊥) itself. On the
contrary, if one measures only the photon spectrum, one can access only a given
moment of this function.
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Gelis-Jalilian-Marian (2002)

CGC Effect 
 seen at soft 
  momentum
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⇥⇥p A

⇠ ↵eh(g⇢p)2ihUU†UU†i

⇠ ↵e�nqhUU†i

⇠ ↵eh(g⇢p)2ihUU†UU†i

Bremsstrahlung

Annihilation

Benic-Fukushima (2016)
Not important (suppressed)
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⇠ ↵enqhUU†i

⇠ ↵eh(g⇢p)2ihUU†UU†i

LO:

NLO:

NLO is overwhelming but the pA expansion still works
Systematic calculations feasible 
Not small corrections but dominant at high energies 
pA photon data (hopefully) coming very soon

(g⇢p)
2 < nq  g⇢p
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Benic-Fukushima-Garcia-Montero-Venugopalan (2016)
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Figure 5: Regular contributions for the amplitude with two Wilson lines in the fundamental representation.

where the total Dirac structure is combined as

T
µ
q (k1?) ⌘

5X

�=3

R
µ
�(k1?) , T

µ
q̄ (k1?) ⌘

8X

�=6

R
µ
�(k1?) . (26)

In the first term in (25), we introduced a dummy integration over y? and k?. In the second term in (25),
we renamed x? ! y? and further, introduced a dummy integration over x? and k?.

Let us now consider the case where there are two insertions of the e↵ective vertex on the quark propagator.
The contribution corresponding to a photon emission between two insertions of the e↵ective vanishes for
the same kinematic reasons as previously – the pole integration yields a null contribution. Thus the only
non-zero contributions come from diagrams where one insertion is on the quark line and the other on the
anti-quark line. There are four such contributions, which are listed as diagrams (9)–(12) in Fig. 5.

All of these diagrams are computed with the same logic as previously. As an example, we focus on
diagram (9). The corresponding amplitude can be written as

M
µ
9 (p, q,k�) =

Z
d4k

(2⇡)4
d4k1
(2⇡)4

ū(q)(�iqfe�
µ)S0(q + k�)T (k, q + k�)S0(q + k� � k)

⇥ (�ig /AR(k1) · t)S0(q + k� � k � k1)T (q + k� � k � k1,�p)v(p) .

(27)

As for the case with only one e↵ective vertex, and for the same reasons articulated there, only the proton
piece A

µ
p of the regular field A

µ
R contributes. The integrals over k

+, k+1 and k
�
1 can be performed thanks

to the �-functions in the two e↵ective vertices T and in A
µ
p , respectively. The remaining integration over

k
� can be evaluated by the method of residues. As in the case of the one e↵ective vertex insertion, the

gluon scattering vertices (Cµ
U and C

µ
V ) are kinematically forbidden by the pole integration. Performing

similar steps for the remaining diagrams (10)–(12), the amplitude of the sum of the diagrams (9)–(12) can
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In the following computation, we shall include only one insertion of Aµ
R/S on the quark propagator, regular or

singular, to stay consistently at first order in the proton source ⇢p. As noted, the number of gluon insertions
from the nucleus onto the quark and antiquark lines from the nucleus can, however, in our dilute-dense
power counting, be as many as the kinematics permit. The amplitude can be decomposed into the external
polarization vector of the photon and an amplitude vector, with the results in the following subsections
expressed in terms of the amplitude vector defined as

M�(p, q,k�) ⌘ ✏
⇤
µ(k� ,�)M

µ(p, q,k�) , (13)

where q, p, and k� are the quark, the antiquark, and the photon external three momenta, respectively, and
� is the photon polarization. We summarize in Table 1 the momenta notations that will be used in the
following calculations.

2.2. Regular contributions to the amplitude

Following the above stated classification, we will proceed to find the regular diagrams which have no
fundamental Wilson lines first. For this case, there are two diagrams, shown on Fig. 3, with exactly one
insertion of the proton source, in the form of the regular field AR. The two diagrams represent the scattering
of a gluon o↵ the target and the resulting creation of a qq̄ pair. The photon is then emitted from the quark
or antiquark line. Using standard Feynman rules, the vector amplitude for the diagram (R1) (denoted as
M

µ
R1) is

M
µ
R1(p, q,k�) = ū(q)(�iqfe�
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where P is the total external 4-momentum
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and the quark lines are given in this calculation by the vacuum time-ordered fermion propagator

S0(p) ⌘ i
/p+m

p2 �m2 + i✏
. (16)

The proton field A
µ
p does not contribute to this diagram. It contains the delta function �(p� + q

� + k
�
� )

which cannot be satisfied if the quark, antiquark, and photon are on-shell, as p�, q�, k�� > 0. Dropping the
A

µ
p term, we are left with the rest of Aµ

R, which, for the amplitude M
µ
R1, gives,
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(17)
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Figure 4: Contributions for the amplitude with at most one Wilson line in the fundamental representation, either Ũ or Ũ†.

Following the same procedure as the one for (R1), one finds the amplitude contribution (R2) for the photon
emitted from the antiquark to be
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It will be shown in the next subsection that the singular contributions will cancel the terms with the Wilson
line V –the final expression has no dependence on V .

Diagrams with one insertion of the e↵ective vertex on the quark propagator can have one Wilson line Ũ

or Ũ
† in the fundamental representation, as shown in Fig. 4, for the quark [diagrams (3)-(5)] and likewise

for the antiquark [diagrams (6)-(8)]. In the following steps we will treat them separately for convenience.
As in the case of the amplitudes (1) and (2), the amplitude (3) in Fig. 4 will have a regular field insertion.
However, now in addition we must insert the e↵ective nuclear vertex (11) for the multiple gluon scatterings.
We should integrate over nuclear momentum transfer k2 to obtain,

M
µ
3 (p, q,k�) =
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d4k2
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ū(q)(�iqfe�
µ)S0(q+k�)T (k2, q+k�)S0(q+k��k2)(�ig /AR(P �k2) · t) v(p) . (19)

We then integrate over k
+
2 and k

�
2 . This integration is trivial for k

+
2 since T (q + k� , k2) contains �(k+2 ).

Only the proton field part Aµ
p of the regular field gives a finite contribution. In this part, the k�2 integration

is also trivial because A
µ
p contains �(P�

� k
�
2 ). We shall now demonstrate that the integration over the

remaining part of Aµ
R vanishes by the residue theorem. The singularities in k

�
2 of the regular field and the
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or Ũ
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n⇥

U(x?)� 1
⇤ba

/CU (P,k1?)

+
⇥
V (x?)� 1

⇤ba
/CV,reg(P )

o
/p+ /k� �m

(p+ k�)2 �m2
�
µ
t
b
v(p) .

(18)

It will be shown in the next subsection that the singular contributions will cancel the terms with the Wilson
line V –the final expression has no dependence on V .

Diagrams with one insertion of the e↵ective vertex on the quark propagator can have one Wilson line Ũ
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kT factorized approximation from the expansion  
of the Wilson line (no CGC resummation !?)

q

CGC

replaced by a perturbative vertex

Then, the distribution function is introduced, in which 
a part of resummation is taken into account

This approximation makes sense when a large momentum 
(or quark mass) is involved in the considered process
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FIG. 1. Ratios of the k?-factorized results to the full CGC results as a function of k�? at
p
s = 7 TeV with the isolation cut

R = 0.4. The upper panel is for the photon rapidity ⌘� = 0 and the lower for ⌘� = 2.5. The band represents the error estimate
from performing multidimensional integrals using the VEGAS Monte Carlo integration routine.

The matching procedure fixes the proton radius Rp, to Rp = 0.48 fm, or equivalently S? = ⇡R
2
p = 7.24 mb. Note

that this value of Rp is quite close to that extracted from saturation model fits to exclusive DIS data [46]. In our
computations, we will take quark masses to be typically mu = md = 0.005 GeV, ms = 0.095 GeV, mc = 1.3 GeV and
mb = 4.5 GeV. We will discuss later the e↵ects of varying the parameters on model to data comparisons.

Evaluating the full CGC formula for the single inclusive photon cross-section as a function of photon transverse
momenta k�? and rapidity ⌘� in Eq. (3) involves performing 10-dimensional integrations while the simpler k?-
factorized approximation in Eq. (9) involves 8-dimensional integrations. Such multidimensional integrations are most
e�ciently performed by employing the VEGAS Monte Carlo (MC) algorithm. For the k?-factorized integral, 108

points were used to sample the approximate distribution of the integrand, until convergence with a significance of
� = 0.3 was obtained. For the CGC calculations, we used the same algorithm but sampled the integrand with 109

points. As a numerical check of our computation, we confirmed that in the small k�? limit the NLO result reproduces
the soft photon theorem–see Eqs. (B.7)-(B.11) in Ref. [16].

At low to moderate k�?, the full-CGC computation of the inclusive photon cross section based on (3) breaks
k?-factorization. This is also the case for inclusive quark production, as shown previously [47]. Our results for k?-
factorization breaking are shown in Fig. 1, where we plot the ratio of the full CGC inclusive photon cross-section to
the k?-factorized cross-section at

p
s = 7 GeV and R = 0.4. The results are plotted for central and forward photon

rapidities, for individual flavor contributions, and for the net sum over flavors. The breaking of k?-factorization is
greater for forward rapidities and for decreasing quark mass, with negligible breaking of k?-factorization observed
for the heaviest flavor. Quantitatively, the breaking is maximally ⇠ 10% breaking at low k�?, approaching unity for
k�? & 20 GeV. As suggested by the discussion in [48], when k�? is small, the quark-antiquark pair are more likely to
both scatter o↵ the gluon shockwave in the target; the k?-factorized configuration, where multiple scattering of both
the quark and antiquark does not occur, is therefore suppressed. As also suggested by Fig. 1, the reverse is true at
large k�?.

Since the available data from the CMS and the ATLAS collaborations for p+p collisions at the LHC are for
k�? & 20 GeV, Fig. 1 clearly indicates that the k?-factorized formula is a very good approximation for this momentum
range. This is fortuitous since the computation involves fewer integrals than the full CGC expression. Therefore, for
the rest of this paper, our numerical results are performed using the k?-factorized formula in Eq. (9).

Next, to illustrate the importance of the NLO (gg ! qq̄�) channel quantitatively relative to the LO (qg ! q�)
channel, we plot in Fig. 2 the NLO / (NLO+LO) fraction as a function of k�?. The left panel shows the collision
energy dependence of the ratio for

p
s = 0.2, 2.76, 7 and 13 TeV with ⌘� = 1.0. We observe that the NLO fraction of

the inclusive photon cross-section at the highest RHIC energy of
p
s = 0.2 TeV is quite small, ⇠ 10%. This is because,

for the relevant k�?, quite large values of x are probed in the proton where the gluon distribution does not dominate
over that of valence quark distributions. However, already at

p
s = 2.76 TeV, the NLO contribution is more than

60% even for the largest values of k�? shown, and increasing the center-of-mass energy to
p
s = 7 TeV and 13 TeV

enhances the NLO contribution to more than ⇠ 90%. These results confirm that at LHC energies gluons dominate
the proton wavefunction, even for photons with k�? = 50 GeV. The right panel shows the ratio for photon rapidities
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FIG. 2. Fraction of the inclusive photon cross section from the NLO gg ! qq̄� channel relative to the total NLO+LO
contribution, as a function of k�?. The left panel shows the collision energy dependence at

p
s = 0.2, 2.76, 7, 13 TeV for

⌘� = 1.0. The right panel shows the photon rapidity dependence at ⌘� = 0, 1.5, 2.5 for
p
s = 7 TeV. In both cases, R = 0.4.

of ⌘� = 0, 1.5, 2.5 at a fixed
p
s = 7 TeV. The NLO contribution dominates completely at central rapidities and

supplies 50% of the cross-section even at ⌘� = 2.5 and k�? = 50 GeV.
Before we discuss the comparison of our results to the LHC data, we will discuss the various sources of theoretical

uncertainties. There is an overall degree of uncertainty in performing the Monte Carlo integrals, which is quantified
by the error estimate of the VEGAS algorithm. This error estimate for the k?-factorized inclusive cross-section is the
range of 0� 5% for all flavors. For the full CGC expression, which contains two more integrals, the errors are in the
range of 5� 15%. The inclusive isolated photon cross section (9) was calculated using the MC VEGAS algorithm as
a function of k�? and ⌘� . The further integration over ⌘� , required in the following, is calculated separately using the
trapezoidal rule approximation, which has a negligible error.

We should note, however, that there are other sources of uncertainty. We previously noted the 1/N2
c corrections

in using the BK truncation of the JIMWLK hierarchy. In practice, these have been observed to be significantly
smaller, and may be especially so in the regime where k?-factorization is applicable. Another source of systematic
uncertainty are the values of the quark masses. Varying the quark masses in the ranges mu,d = 0.003 � 0.007 GeV,
ms = 0.095 � 0.15 GeV, mc = 1.3 � 1.5 GeV and mb = 4.2 � 4.5 GeV, we observed that the cross section for
10GeV < k�? < 50GeV varies by 5 � 10% for the light u, d, and s quarks, while the heavier c and b quarks have
small variations of order 0� 5%. Based on these sources of uncertainty, we have included a systematic error band of
15% in comparisons to data. Further sources of uncertainty include higher order corrections to photon production as
well as to the BK evolution. These are usually represented in the literature by a multiplicative constant “K-factor”.
In our case, this is bundled together with the transverse area S?. Though, as we noted, S? is constrained from the
matching to parton distributions at large x, there can easily be 50% uncertainties in the overall cross-section that are
absorbed by the extraction of the K-factor from comparison of the computed cross-sections to data. Until we can
quantify the sources contributing to this K-factor separately, we should understand these sources of uncertainty as
being “bundled” together in the value extracted.

After these preliminaries, we can now compare our LO+NLO results (employing the sum of Eqs. (1) and (9)) with
the available LHC data. In Fig. 3, we show a comparison of our results to the p+p 2.76 TeV CMS data on inclusive
isolated photon production [27]. Likewise, the comparison to 7 TeV LHC data from CMS [29] and ATLAS [30] are
shown in Fig. 4. For all the curves shown, a photon isolation cut R = 0.4 is applied. The CMS data for 7 TeV is
presented in [29] as a rapidity bin averaged quantity. However, in Fig. 4, we multiplied this averaged quantity with
the rapidity bin width 2�⌘, to facilitate the comparison with ATLAS data. Note further that since the data sets
integrate over symmetric intervals around the mid-rapidity regions, a factor of 2 was included in our comparison with
data.

Our results describe both the 2.76 TeV and 7 TeV data quite well with a common K-factor of K = 2.4 corresponding
to a best fit to the central values of the experimental data. We observe that this is very close to the K-factor of 2.5
extracted in computations of D-meson production in this dilute-dense CGC framework [25]. This is what one should
expect since, as noted, the same channel as considered here, is the primary mechanism for charm pair production. In
Fig. 5, using the same K-factor, we present our prediction for the inclusive photon cross-section at

p
s = 13 TeV with

the same rapidity bins as shown in the previous plots.

Gluons are surely dominant degrees of freedom
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To see the true CGC effect, direct photons ~ a few GeV

In pA the nuclear PDF could be probed directly

Heavy flavor is hard to see the true CGC effect

Is this possible?  How far?

Photons ~ a few GeV is interesting also as a probe to detect  
strong magnetic fields and induced phenomena


